

Thermal Performance of Spandrels

BEST6 Conference

March 20, 2024

Speakers

Ivan Lee | MASc., P.Eng Building Science Engineer

Daniel Haaland | MASc., P.Eng Principal, Senior Building Science Engineer

CHARLES PANKOW FOUNDATION

Building Innovation through Research

Independent, private grant-making foundation, supporting research & innovation within the AEC industry.

> Founded in 2005 \$15M Funded 94 Research Grants 37 Organizations

All work product is publicly shared for collective use and industry change.

Agenda

Spandrels

What, Where, Why Spandrels?

Codes & Standards

What do the codes say?

Research & Testing

Closing the Performance Gap

Spandrels

What, Where, Why Spandrels?

Glazed Wall Spandrel Systems

A non-vision application of a fenestration product; typically used to hide or obscure features of the building structure or used for visual effect. **(NFRC 100)**

North American Glass Curtain Wall Market estimated > \$8.4 Billion in 2023

(Stellar Market Research, 2023)

QA + QC Aesthetics

Customization

Speed of Construction

Codes & Standards

What do the codes say?

What is a Spandrel?

State Level

Building Energy Performance

Building Energy Performance

Uncertain Thermal Performance

REFERENCE PROCEDURE FOR SIMULATING SPANDREL U-FACTORS

www.fen-bc.org

Uncertain Thermal Performance

REFERENCE PROCEDURE FOR SIMULATING SPANDREL U-FACTORS

No Consensus

NFRC Spandrel Task Group | Sim. vs. Testing

NFRC Spandrel Task Group | Sim. vs. Testing

Uncertain Thermal Performance

■ 2D NFRC-100 ■ 2D NFRC Spandrel ■ 3D Thermal

Uncertain Thermal Performance

2D NFRC-100

■ 2D NFRC Spandrel ■ 3D Thermal

Thermal performance is dependent on size similar to fenestration (windows and doors)

Impact of Adjacent Assemblies

Adjacent assemblies may impact spandrel heat flow

Spandrel Thermal Performance Adjacent to Glazing

Spandrel with R-16.8 insulation adjacent to double glazed IGU

Spandrel with R-16.8 insulation and R-8.4 interior insulation and furring adjacent to double glazed IGU

Uncertain Thermal Performance

Derated performance due to thermal bridging Spandrel with R-16.8 insulation

'Actual' **R-6.5!**

Hotbox Lab Measurement

3D Analysis

2D Analysis

Approach	Thermal Transmittance W/m²K (BTU/ft²hr°F)	Effective R-value m²K/W (ft²hr°F/BTU)	Percent Difference Compared to Hotbox Measurement
Hotbox Measurement	0.87 (0.153)	1.2 (6.5)	-
3D Analysis	0.87 (0.153)	1.2 (6.5)	0%
2D NFRC-100	0.63 (0.111)	1.6 (9.0)	32%
2D NFRC Modified	0.68 (0.120)	1.5 (8.3)	24%

Research & Testing

Closing the performance gap

Thermal Performance of Spandrels

Research Timeline

Started Summer 2023

RESOURCES / DOWNLOADS

Close the Knowledge Gap

Result: detailed data set on heat flow through various components of spandrel assemblies

Test Articles

Committed Donations!

Leadership Circle AIA OWENS BEC 40 PERMASTEELISA INTERNATIONAL INSTITUTE OF GROUP BUILDING ENCLOSURE CONSULTANTS CAK RIDGE YKK imm ARCHITECTURAL PANELS BERKELEY Glass Coatings & Concepts LL AB Lawrence Berkeley National Laboratory UNRIVALED. MARTIN/MARTIN CONSULTING ENGINEERS RIMSTAR

GLASS PRODUCTS

ENGINEERS ARCHITECTS MATERIALS SCIENTISTS

Ivan Lee | MASc., P.Eng Building Science Engineer ilee@morrisonhershfield.com

Daniel Haaland | MASc., P.Eng Principal, Senior Building Science Engineer dhaaland@rdh.com

Thank You!

