BEST6

Optimizing Renovation:

Unveiling Thermal Bridging in Existing Buildings Through Modeling

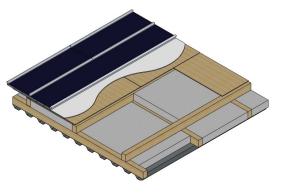
Amrish K. Patel, P.E. – Senior Project Manager Kyle M. Nay, P.E. – Consulting Engineer

Outline

- Building Enclosure Thermal
 Performance
- Thermal Bridging
- Thermal Modeling
- Modeling Examples
- Conclusion

Enclosure Thermal Performance

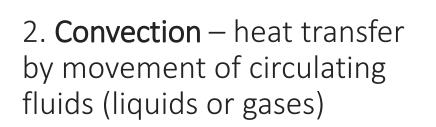
Table 5.5-2 Building Envelope Requirements for Climate Zone 2 (A,B)*

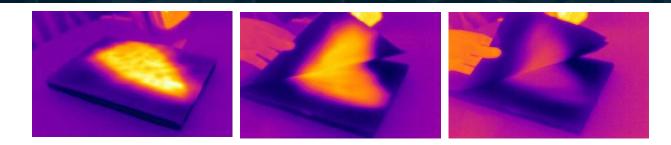

	Ne	Re	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum
			Roofs
Insulation entirely above deck	U-0.039	R-25 c.i.	U-0.039
Metal building ^a	U-0.041	R-10 + R-19 FC	U-0.041
Attic and other	U-0.027 R-38		U-0.027
			Walls, above Grade
Mass	U-0.151 ^b	R-5.7 c.i. ^b	U-0.123
Metal building	U-0.094	R-0 + R-9.8 c.i.	U-0.094
Steel-framed	U-0.084	R-13 + R-3.8 c.i.	U-0.064
Wood-framed and other	U-0.089	R-13	U-0.089

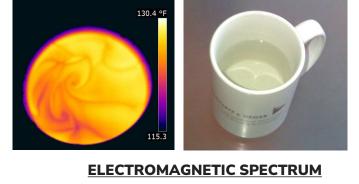
_	Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Min. VT/SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Min. VT/SHGC	
		Vertical Fenestration, 0% to 40% of Wall						
	Fixed	0.45	0.25	1.10	0.45	0.25	1.10	
	Operable	0.60	0.23	(for all types)	0.60	0.23	(for all types)	
	Entrance door	0.77	0.23		0.77	0.23		
	Skylight, 0% to 3% of Roof							
March	20, 2024 s	0.65	0.30	NR	0.65	0.30	NR	

Excerpt from ASHRAE 90.1-2022

<section-header>


ROOF SYSTEMS




Heat Flow Basics

1. **Conduction** – heat transfer through a solid material from one molecule to another

3. Radiation – heat transfer in the form of electromagnetic waves

Definition

Thermal Bridge – Any place in the building envelope where heat flows through one material at a much higher rate than adjacent materials.

It can occur due to:

- Penetrations
- Change in Thickness
- Change in Geometry

Classification

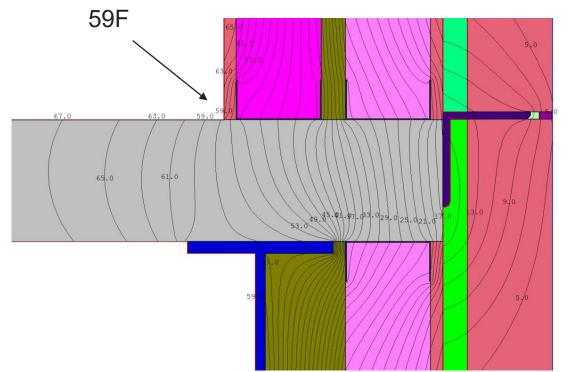
Clear-Field (Assembly)

Continuous and/or repeating planer elements such as metal framing or regularly spaced cladding anchor clips

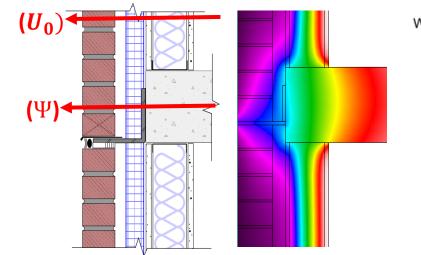
Linear

Interfaces where two parts of a building intersect (interfaces), such as floor-towall and roof-to-wall interfaces, projecting balcony slabs, or parapets

Point


Localized penetrations through the building envelope (non-continuous across the plane of the enclosure assembly)

Importance and Consequences



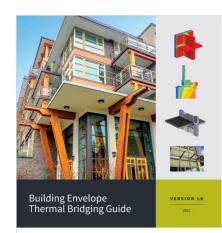
Code Requirements

- ASHRAE 90.1-2022
 - Requirements to address thermal bridging
 - New Normative Appendix K
- NYC, DC, Seattle, MA

$$U_T = \frac{\sum(\Psi * L) + \sum(\chi)}{A_{Total}} + U_0$$

Where:

 $U_T =$ $U_o =$ $A_{total} =$

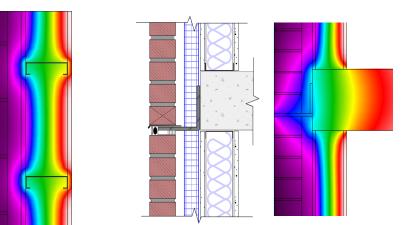

Ψ = L = χ =

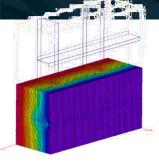
total effective assembly thermal transmittance (Btu/hr·ft ^{2,o} F or W/m ² K)
clear field thermal transmittance (Btu/hr·ft ^{2.} °F or W/m ² K)
the total opaque wall area (ft ² or m ²)
heat flow from linear thermal bridge (Btu/hr·ft °F or W/mK)
length of linear thermal bridge, i.e. slab width (ft or m)
heat flow from point thermal bridge (Btu/hr· °F or W/K)

Resources

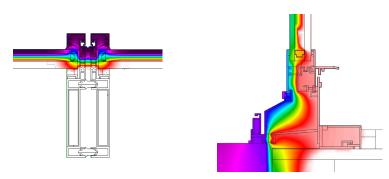
Table A10.1 Thermal Bridging Psi-Factors and Chi-Factors for Thermal Bridges

				Unmitigated		Default	
	Class of Construction— Wall, above Grade	Thermal Bridge Type	Section	Psi-Factor, Btu/(h·ft·°F)	Chi-Factor, Btu/(h·°F)	Psi-Factor, Btu/(h·ft·°F)	Chi-Factor, Btu/(h·°F)
Thermal Envelo	Steel framed and	Roof edge	5.5.5.1.1	0.450	N/A	0.140	N/A
Interactive Thermal Bridging Calculation Tools	metal buildings	Parapet	5.5.5.1.2	0.289		0.151	
		Intermediate floor to wall intersection	5.5.5.2.1	0.487		0.177	
		Intermediate floor balcony or overhang to opaque wall intersection	5.5.5.2.2	0.487		0.177	
Thermal Envelope		Intermediate floor balcony in contact with vertical fenestration	5.5.5.2.2	0.974		0.177	
		Cladding support	5.5.5.3	0.314		0.217	
Phius 2021		Wall to vertical fenestration intersection	5.5.5.4	0.262		0.112	
PASSIVE BUILDING STANDARD		Other element and assembly intersections	5.5.5.5	N/A	1.73	N/A	0.91
	Mass	Roof edge	5.5.5.1.1	0.500	N/A	0.100	N/A
	(exterior or integral)	Parapet	5.5.5.1.2	0.238		0.125	
		Intermediate floor to wall intersection	5.5.5.2	0.476		0.179	
		Intermediate floor balcony or overhang to opaque wall intersection	5.5.5.2.2	0.476		0.179	
		Intermediate floor balcony in contact with vertical fenestration	5.5.5.2	0.974		0.177	
		Cladding support	5.5.5.3	0.270		0.186	
		Wall to vertical fenestration intersection	5.5.5.4	0.188		0.131	
Ophius SJW. Jackson Bhd. Suite 1432 (12) 561-4588 Chicogo, IL 60004 www.phius.org		Other element and assembly intersections	5.5.5.5	N/A	0.91	N/A	0.19

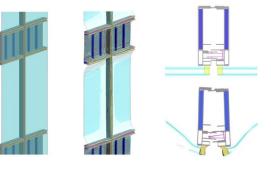

OBC Hydro Power smart OB C HOUSING Date Only OF FORTIS BC PProvedions

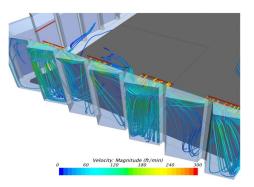

March 20, 2024

sure Science and Technology

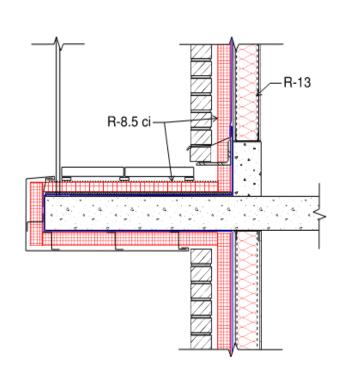

9

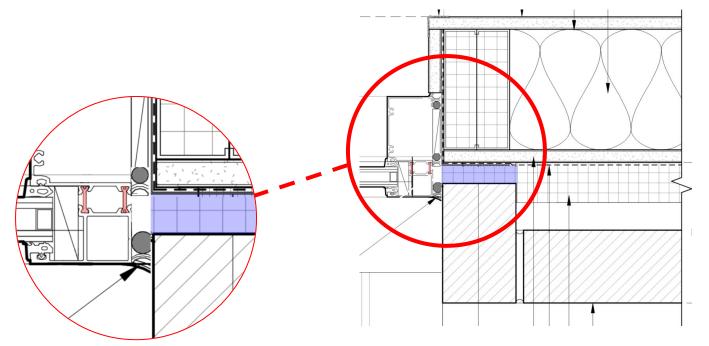
Analysis Tools




Heat 2 / Heat 3 3D Finite Difference (Steady State / Transient)

THERM 2D Finite Element March 20, 2024 Analysis


ANSYS 3D Finite Element Analysis (Steady State / Transient)



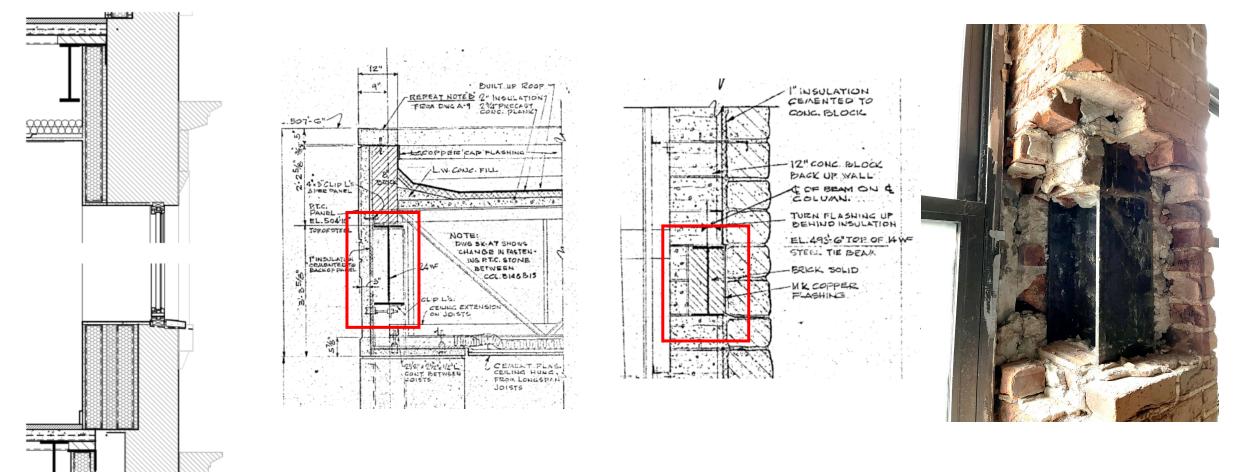
StarCCM+ Computational Fluid Dynamics (Finite Volume Method – Steady State / Transient)

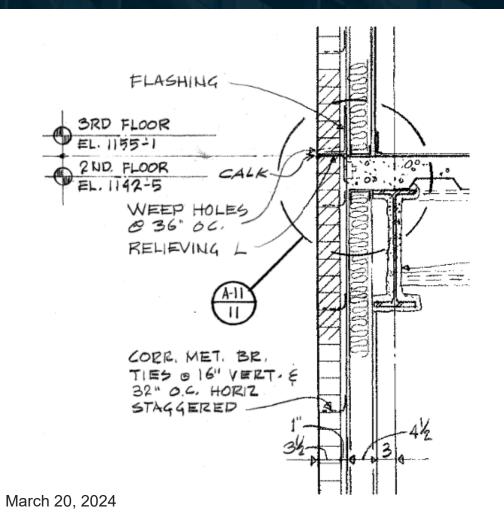
Mitigation Strategies

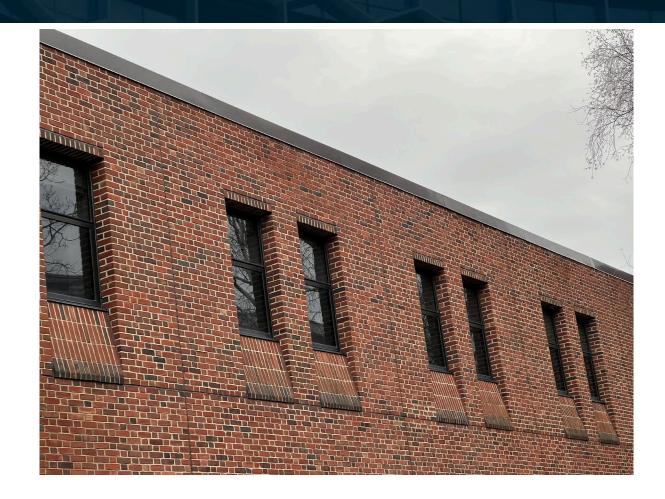
- Maintain Continuity
- Align thermal barrier elements

Mitigation Strategies

- Reduce Thermal Bridges
- Consider thermal break/separator

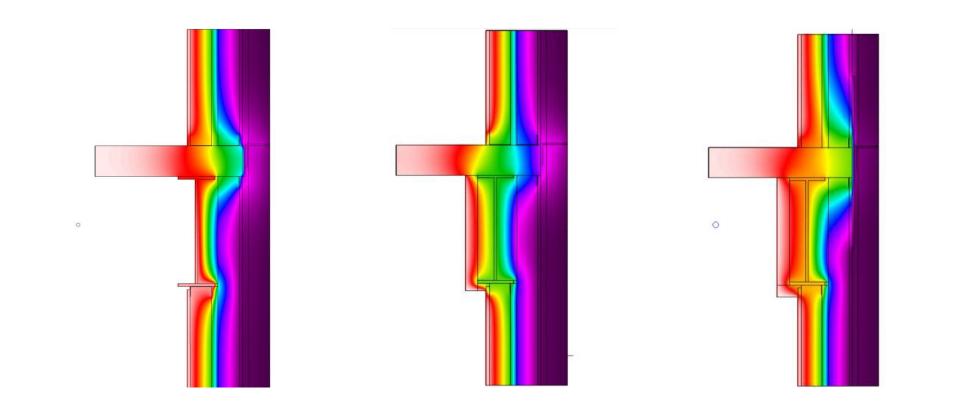


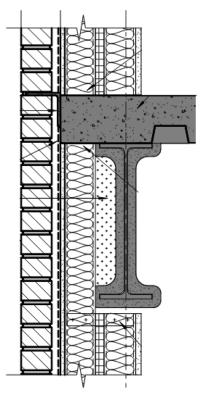




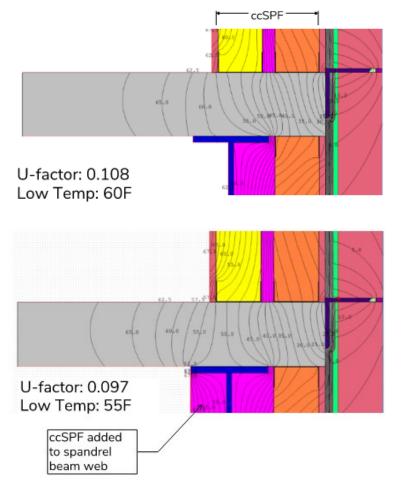
March 20

Mitigation Strategies – Existing Buildings

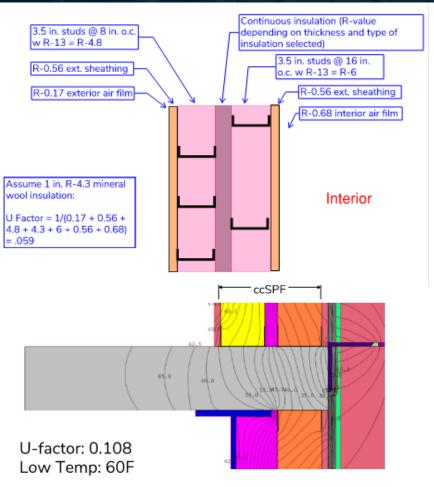


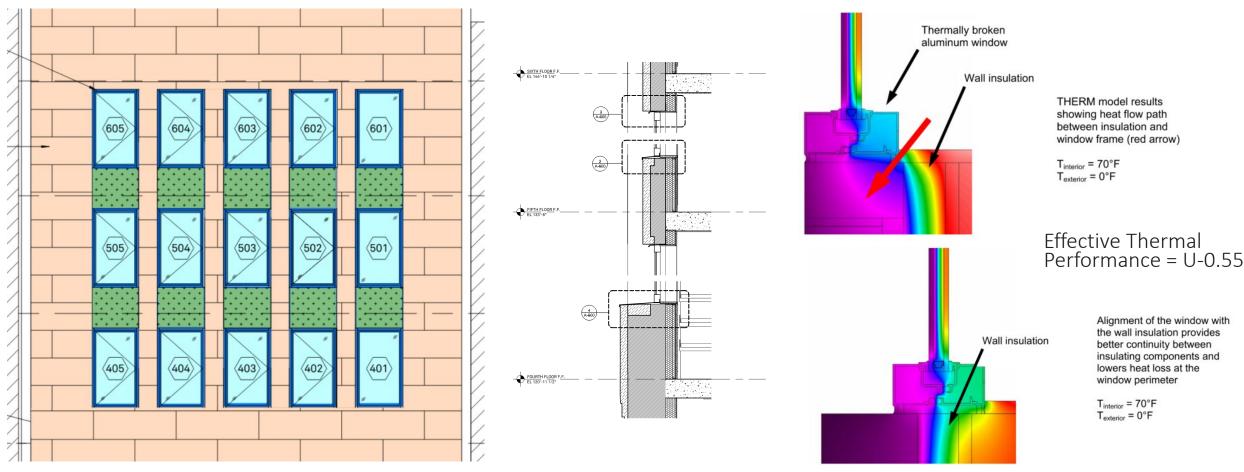





- 2018 IECC
 - R13 + R7.5 ci or U-0.064
- Thermal Bridging
 - Clear-Wall (Field) at metal stud framing
 - Linear at floor lines

U-0.124	U-0.062	





Building Enclosure Science and Technology 18

Project Example No. 2 – Existing Building Window Replacement

March 20, 2024

Conclusions

- Thermal bridging can have a significant impact on the overall thermal performance of the building enclosure.
- Improper or incomplete evaluation often results in a combination of increased condensation risk, inefficient mechanical system operation, high energy costs, and occupant thermal comfort problems.
- Existing buildings present greater challenges that are outside of the designer's control when compared to new design projects.
- Selecting the appropriate method of analysis is influenced by the project location, certifications, owner-driven performance requirements, and/or building geometry.

Thank You