

Delivering the best climate results on the "worst" projects

Learning Objectives

- Identify Common Enclosure Issues relating to underperforming buildings (energy)
- Understand project approaches to influence quality
- Identify key details with significant energy implications <u>and</u> no or low incremental cost to correct
- Discuss "Future proofing" building enclosures

Applying a durability lens to enclosure decisions

Common Energy Issues

Air Leakage

- 13% of energy consumed by residential buildings (DOE)
- 6% of energy consumed by commercial buildings (DOE)
- Potentially much higher for poorly constructed enclosures
- Presents as "feathering" in IR images

Common Energy Issues

- > Thermal Bridging
 - > Up to 30% of total losses
 - Linear (e.g. floor lines)
 - Isolated (point) (e.g. fasteners, brick ties)
 - Repeating (steel studs)
 - Continuous insulation generally effective in reducing thermal bridging

<u>Before</u> R-13 batts in cavity between studs

After

R13 + ½" rigid foam continuous insulation over studs

Source: Dryvit/Dow

Influencing Quality

- Enclosure Consultant Keys to Success
 - Defined Scope (and understood by project stakeholders)
 - Influence (on client, and on decision makers)
 - Collaboration involve stakeholders in key decisions & achieve buy-in to solutions

Influencing Quality

- Enclosure Consultant Keys to Success
 - Pro-active identify and solve problems before they are problems
 - Technical knowledge be the expert!
 - Story Telling horror stories from past projects

Influencing Quality

- Enclosure Consultant Key Scope Items
 - Design Review / Consultation
 - Submittal Review
 - Pre-construction / Pre-installation meetings
 - Performance Mock-ups / First Installs (stand along mock-up preferable)
 - > Field review visits
 - Performance testing

"Worst" projects – most challenging

- > Wood frame multi-family
 - Stick-built
 - Less skilled trades
 - Lower tier contractors
 - Lower quality materials
 - Complicated details
 - ➢ Often <u>very</u> leaky (air)
 - Lots of opportunity to improve energy performance through air tightness!

- Air/WRB material selection
 - MechanicallyFastenedSheet
 - Adhered Sheet
 - Fluid applied

Base of Wall

- Unsealed no air barrier
- Connect air/WRB to footing
- Self-adhered membrane from sheathing to footing
- Tape sheet air/wrb to self-adhered membrane
- "Sill saver" foam between sill plate and footing (additional protection)
- > Other flashings over top

> Top of Wall

- \succ Unsealed \rightarrow no air barrier
- Self-adhered membrane from sheet air/WRB to sheathing
- Airtight drywall ceiling @ interior for air barrier
- Sprayfoam sheathing to top plate@ interior

Balconies

- Pre-strip air/WRB through balcony
- Integrate w/ Air/WRB above balcony for air barrier continuity

- Unconditioned corridors
 - Connect AB through floor assembly
 - Airtight sheathing
 - Spray foam through depth of floor assembly

MEP Penetrations

- > Not like this!
- Use airtight boxes and flash <u>before</u> installation of cladding
- Sprayfoam can be used in stud space to encapsulate non airtight boxes

Soffits

Make sure Air/WRB wraps the soffit for AB continuity

General Approach

- Optimize performance within available first cost budget
- Prioritize long service life items over shorter service life / easily replaceable / upgradeable items
- Think about replacement sequence – design for future replacements where applicable

► Air/WRB

- Focus on achieving durable airtight performance
- Consider life cycle of cladding materials
- Many wall claddings are likely to be in place for life of building
- invest first cost \$ on items that are unlikely to be replaced during life of building

➢ Roofing

- Low-slope roofing typical life cycle 25+/- years (or less)
- > Will definitely be replaced over life of building
- Allow for re-roofing (removeable counter flashing etc.)
- Consider threshold heights to allow for increased insulation
- Better to VE on roof than wall air/wrb (within reason)

➢ Waterproofing

- Consider location
- Below grade waterproofing very difficult to repair/replace – invest first cost \$
- Split slab waterproofing very difficult to repair/replace invest first cost \$
- Balcony waterproofing / other exposed easily replaceable ok to VE

> Windows

- Big influence on energy performance (depending on window/wall ratio)
- May be replaced, but typically long life cycle and often difficult to replace
- Invest first cost \$ in windows

Durability is the ability of a physical product to remain functional, without requiring excessive maintenance or repair, when faced with the challenges of normal operation over its design lifetime

remain functional

- without excessive maintenance or repair
- Challenges of normal operation
- ➢ over design lifetime

Define Expectations

- \succ Expected life cycle \rightarrow Owner
- Acceptable maintenance / repair Owner
- Challenges of normal operation Consultant
- Design lifetime Consultant

Durability Lens for decision making

- Objective approach non confrontational
 - Does proposed product / detail / solution meet owner expectations for durability?
 - If not, is Owner willing to reduce expectations (cost vs. performance decision)
- Document decisions
- Document any changes in Owner expectations

Durability Lens for decision making

- Sets clear expectations
- Clear decision making approach
- Documentation of decisions and performance expectations
- Protects design and construction teams from unreasonable expectations

Thank You